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Membrane receptor dynamics

What information does 
membrane-receptor dynamics 
(specifically, receptor mobility) 
reveal about signaling 
transduction
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 What factors affect 
receptor mobility?

• Molecular characteristics (size, number of 
transmembrane domains).

• Receptor aggregation. 

• Membrane organization and heterogeneity.

•Interactions with other proteins, eg: 
cytosolic signaling proteins. 



Single particle tracking
Technique to observe dynamics of optically tagged 
biomolecules with high spatiotemporal resolution.
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LFA-1

• Cell surface integrin receptor.

• Binds to ICAM-1.

• Mediates immune synapse 
formation between a T cell and an 
APC

• Interacts with the actin 
cytoskeleton to modulate 
lymphocyte adhesion and migration.

Image from Dustin lab



SPT analysis of LFA-1
Previous analysis of LFA-1 trajectories on Jurkat cells 

revealed two diffusive states.

• Trajectories classified based on the 
fits of the observed mean squared 
displacement to the following 
equation:

MSD(t) = 4Dtα

• Distribution of diffusion coefficients 
segmented into two categories.

cells. In the case of HI111, treatment with cytoD caused
an increase in both the fraction of mobile trajectories
and their diffusivity (Figure 3B, 82% at Dmacro = 4.1 6
0.3 3 10210 cm2s21). This observation suggested that
the immobile fraction of receptors labeled by HI111 is
tethered by cytoskeletal regulators on resting cells.
Interestingly, the effect of PMA on the diffusion profile

of MEM148 was opposite to the effect of this cellular ac-
tivator on the diffusion profile of TS1/18 (Figure 3E). The
mobile population decreased from 46% to 30%, while
the immobile population increased to 70% at Dmacro =
0.3 6 0.7 3 10210 cm2s21. Furthermore, computation
of weighted parameters for the immobile population
showed a dramatic increase in the a value, from 0.6 6
0.2 to 1.4 6 0.1, and a decrease in the Dmicro value,
from 7 6 1 3 10210 cm2s21 to 2.3 6 0.7 3 10210 cm2s21

(see Table S2). These results suggested that PMA acti-
vation causes the active, open conformation labeled
by MEM148 to become largely immobile and to experi-
ence directed motion. We also used FPR to confirm
that the vast majority of MEM148-labeled receptors
were laterally immobile on cells treated with PMA (data
not shown).

SPT Shows that ICAM-1-Ligated LFA-1 Is Immobile
on Both Resting and PMA-Activated Cells
We next considered the effects of LFA-1 binding to its
native ligand, ICAM-1. The trajectories of LFA-1-ICAM-
1 complexes on cells could be observed with the use
of ICAM-1-labeled beads (Figure 4; Peters et al., 1999).
We found that ICAM-1-ligated LFA-1 occupied primarily
the immobile region of the diffusion profile (Figure 4A,

Figure 2. Single-Particle Tracking of LFA-1 Labeled with TS1/18

The diffusion of LFA-1 labeled with TS1/18 was observed with F(ab)’-coated beads and high-speed microscopy (see Experimental Procedures).
(A) Representative trajectories (4 s, 1000 FPS) are shown for control cells in buffer containing DMSO (0.1%), cells treated with cytoD (1 mM, 0.1%
DMSO), and cells treatedwith PMA (200 ng/mL, 0.1%DMSO). Representative trajectories are sorted by Dmacro and colored according to the sub-
population in which they were classified: immobile (green) or mobile (blue). All trajectories are oriented such that the origin is toward the bottom
of the figure and the terminus is toward the top of the figure. Scale bar represents 1 mm. Each condition represents the results of 2–4 independent
experiments.
(B–D) The distribution of calculated diffusion constants (Dmacro) is plotted as a histogram (gray) for each treatment: (B) control, (C) cytoD, (D) PMA.
The population density is shown in black (solid line); the best fit of the population density is shown in black (dotted line) with the best-fitted sub-
populations colored as in (A). The dominant subpopulation is indicated by a box that states the relative area of the peak. Complete peak fitting
results are given in Table S2.
(E) The calculated MSD versus time interval is shown for three representative trajectories within each subpopulation, colored as in (A).

Immunity
300

[Cairo et. al., Immunity, 25, 297-308]

Data were acquired at 1000 Hz.

This and other evidence points to interactions between LFA-1 
and the actin cytoskeleton that modulates LFA-1 mobility. 

There may be transient changes within each trajectory, on a 
shorter timescale relative to the total acquisition time. 
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We developed a 2-state model to capture the dynamics 

of LFA-1 interactions with the actin cytoskeleton.

Model assumptions:

1. Spatially homogeneous substrate distribution. 

2. Distinct diffusion coefficients for the two states.

3. Particle state changes nearly instantaneously (relative to the 
acquisition frame rate), and only at the acquisition time.



Consequences of the assumptions:

Spatially homogeneous substrate distribution.

Effectively first order binding with a forward rate constant

Particle state changes nearly instantaneously (relative to the acquisition frame rate), and 
only at the acquisition time.

Distinct diffusion coefficients for the two states.

Mention that 
tau = 1/frame 



A 2-state hidden Markov model



A 2-state hidden Markov model

• Model parametrized by θ = {D1, D2, p12, p21}

• The likelihood function L[θ|O] describes how likely it 
is to observe the given set of tracks.

• An efficient algorithm exists to compute the 
likelihood function for a given set of parameter values. 



HMM parameter optimization
We use a stochastic likelihood maximization scheme to 
determine the most likely parameter values for an observed 
set of tracks.

The output of the 
parameter optimization 
algorithm is a (posterior) 
frequency distribution of 

parameter values.



HMM parameter optimization
We use a stochastic likelihood maximization scheme to 
determine the most likely parameter values for an observed 
set of tracks.

Extensive tests with simulated particle tracks show that this 
analysis is robust over a wide range of parameters, provided 
D1 > 2D2

The output of the 
parameter optimization 
algorithm is a (posterior) 
frequency distribution of 

parameter values.



HMM vs. MSD analysis

• Greater precision in estimating diffusion coefficients.

• Transition probabilities contain kinetic information (kon and 
koff )

• Possible to statistically test for the most optimal model 
using AIC.



Application to LFA-1 data
2-state model is substantially statistically preferred over 
a 1-state model for LFA-1 mobility.

Justifications for HMM

D1 and D2 are well separated.

p12 and p21 << frame rate



Application to LFA-1 data
2-state model is substantially statistically preferred over 
a 1-state model for LFA-1 mobility.
What biological insights does the HMM analysis provide?

Treatment D1 D2 p12 p21 K=kon/koff Deff 

Control
Cytochalasin D

PMA

0.081 0.015 3.9 9.8 0.4 0.062

0.088 0.019 2.5 11 0.22 0.076

0.057 0.008 19 23 0.81 0.035

* Deff is the diffusion constant for a 1-state model.
Units:  Diffusion coefficients in μm2/s.

Transition probabilities in Hz.   

ICAM-1 ligated LFA-1
on Jurkat T cells. 
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• Disrupting the actin cytoskeleton shifts the 
equilibrium to the free state.

• Multiple effects of PMA-induced activation:
1. Possible changes in binding partner(s).
2. Dynamic remodelling of the actin cytoskeleton. 

Justifications for HMM

D1 and D2 are well separated.

p12 and p21 << frame rate



Further developments
The basic 2-state diffusion model can be extended to include 
additional states and other modes of motion, eg: drift + 
diffusion.

A B

Figure 5: Accuracy of parameter estimates for simulated tracks with transient reduced mobility and varying transi-
tion probabilities (from 0.0032 to 0.1). 10 tracks were simulated for each set of transition probabilities. State 1 was
the slow bound state with D1 = 10−4µm2s−1, and state 2 was the freely diffusing state with D2 = 10−2µm2s−1.
(A) Accuracy of the predicted state sequence (¿95%). (B) Percent error of the predicted diffusion coefficient for
state 1 (D̂1) averaged over the 10 simulated tracks. The biggest errors occur when p12 is large and p21 is small
but they are still less than 10%. Analysis indicated transient reduced mobility as the more favorable model for all
tracks.

A B

C D

Figure 6: Examples of experimental tracks of labelled CD45 and LFA-1 single particles on live T cells which have
channel-like trajectories. (A) LFA-1 on control cell (B) LFA-1 on activated cell (treated with PMA). (C) CD45 on
control cell (D) CD45 on activated cell (treated with PMA).
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Analysis of LFA-1 and CD45 
trajectories does not support a 
model with directed motion

[Analysis and figures by Jennifer Morrison]



Toward a spatial model: 
Trajectory segmentation

A

Predicted state sequence (95% correct)

True state sequence

B

• The 2-state HMM analysis allows us to 
infer the most probable sequence of state 
switching within individual trajectories

• Experimental LFA-1 trajectories show a 
range of switching behaviour, suggesting a 
role for spatial heterogeneity and/or 
confinement.

A

B C

Figure S4: Simulated single particle tracks segmented into two-state with HMM analysis under different membrane

geometries and conditions. (A) Transient reduced mobility within a thin channel (0.005µm) which was approx-

imately the expected step length of the fast diffusive state. The boundaries of the channel were reflective. No

transient directed motion was predicted (see Table S3 for all results). (B) Particles were simulated with transient

reduced mobility within confining areas (corrals) of diameter radius = 0.015µm. Each time a particle encountered

a barrier, it crossed with probability pjump = 0.1 and reflected with probability 1 − pjump = 0.9. This membrane

geometry did not effect the results of the HMM analysis. (C) Transient reduced mobility was simulated in a mem-

brane where confinement zones (radius = 0.015µm) determine diffusive state. Within corrals, particles were in

the slow diffusive state (gray) and outside of the corrals particle were in the fast diffusive state (black). The state

sequence of the HMM analysis was able to accurately predict when the particle was within a confined region. See

table S4 for all results from these simulations.
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Summary
The hidden Markov analysis exposes transient changes 
in mobility that occur on a short time scale within 
single trajectories. 

The likelihood-based model comparison allows for 
optimal model selection. 

LFA-1 dynamics are well-described by a 2-state model 
with a reduced mobility state due to LFA-1 
interactions with the actin cytoskeleton that undergo 
large-scale changes upon cellular activation. 

The HMM analysis can be extended to test for 
transient drift and spatial confinement.

[Das, Cairo and Coombs, PLoS Comp Biol, 5,e1000556]                       [Morrison, Das, Cairo and Coombs (in preparation)]
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